skip to main content


Search for: All records

Creators/Authors contains: "Cabrera-Ziri, Ivan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Dynamically cold stellar streams are the relics left over from globular cluster dissolution. These relics offer a unique insight into a now fully disrupted population of ancient clusters in our Galaxy. Using a combination of Gaia eDR3 proper motions, optical and near-UV colours, we select a sample of likely Red Giant Branch stars from the GD-1 stream for medium-low resolution spectroscopic follow-up. Based on radial velocity and metallicity, we are able to find 14 new members of GD-1, 5 of which are associated with the spur and blob/cocoon off-stream features. We measured C-abundances to probe for abundance variations known to exist in globular clusters. These variations are expected to manifest in a subtle way in globular clusters with such low masses ($\sim 10^4\,{\rm ~\textrm {M}_\odot }$) and metallicities ([Fe/H] ∼ −2.1 dex). We find that the C-abundances of the stars in our sample display a small but significant (3σ level) spread. Furthermore, we find ∼3σ variation in Mg-abundances among the stars in our sample that have been observed by APOGEE. These abundance patterns match the ones found in Galactic globular clusters of similar metallicity. Our results suggest that GD-1 represents another fully disrupted low-mass globular cluster where light-element abundance spreads have been found.

     
    more » « less
  2. ABSTRACT

    A major source of uncertainty in the age determination of old (∼10 Gyr) integrated stellar populations is the presence of hot horizontal branch (HB) stars. Here, we describe a simple approach to tackle this problem, and show the performance of this technique that simultaneously models the age, abundances, and HB properties of integrated stellar populations. For this, we compare the results found during the fits of the integrated spectra of a sample of stellar population benchmarks, against the values obtained from the analysis of their resolved colour–magnitude diagrams (CMDs). We find that the ages derived from our spectral fits for most (26/32) of our targets are within 0.1 dex to their CMDs values. Similarly, for the majority of the targets in our sample we are able to recover successfully the flux contribution from hot HB stars (within ∼0.15 dex for 18/24 targets) and their mean temperature (14/24 targets within $\sim 30 {{\ \rm per\ cent}}$). Finally, we present a diagnostic that can be used to detect spurious solutions in age, that will help identify the few cases when this method fails. These results open a new window for the detailed study of globular clusters beyond the Local Group.

     
    more » « less